NS8-1 Factors and Multiples

	The multiples of a number are the numbers you s	say when counting by that number.
	15 is a multiple of both 3 and 5	0 is a multiple of both 0 and 4
	$3 \times 5 = 15$	$0 \times 4 = 0$
	3 and 5 are both factors of 15	0 and 4 are both factors of 0
1.	List the first few multiples of these numbers.	
	a) 3: <u>0</u> , <u>3</u> , <u>6</u> , <u>,</u> , <u>,</u> , <u>,</u> ,	_
	b) 4:,,,,,,,	_
	c) 5:,,,,,,,,	_
2.	Look at the lists you made in Question 1.	
	a) Is 12 a multiple of 4? How do you kno	w?
	b) Is 17 a multiple of 5? How do you kno	w?
	c) Is 0 a multiple of 3? Of 4? Of 5	?
3.	a) Write 0 as a multiple of 17: $0 = 17 \times$	
	b) Which whole numbers is 0 a multiple of? Exc	 blain.
4.	Rewrite each statement in a way that means the	e same thing but uses the word "factor."
	a) 20 is a multiple of 5.	
	b) 9 is a multiple of 1.	
	c) 0 is a multiple of 8.	
	d) 8 is a multiple of 8.	
	e) 11 is not a multiple of 4.	
	f) Every number is a multiple of 1.	
	g) Every number is a multiple of itself.	
	h) 0 is a multiple of any number.	
5.	Rewrite each statement in a way that means the	same thing but uses the word "multiple."
	a) 5 is a factor of 15.	b) 2 is a factor of 18.
	c) 3 is a factor of 0.	d) Every number is a factor of 0.
	e) 1 is a factor of 7.	f) 1 is a factor of every number.
	g) o is a factor of b.	n) Any number is a factor of itself.

- 8. Cross out the pairs that are repeated in Question 7.
- **9.** Connor makes a chart to list all the factors of 20. He doesn't want to write and check all the numbers from 1 to 20. He starts his list as follows:
 - a) Connor knows that $5 \times 4 = 20$. He thinks that if $6 \times 2 = 20$, then 2 must be less than 4. Explain his thinking.
 - b) Explain why Connor's list is complete.
- **10.** Connor used this chart to help him identify pairs that multiply to 36. Why did he know that his search was complete as soon as he found a pair with both numbers the same?
- **11.** Find all pairs of numbers that multiply to 120.

2nd

10

1st

1

6. Alana wants to find all pairs of numbers that multiply to give 10.

She lists each number from 1 to 10 in a chart. She looks for a second number that multiplies with the first to give 10.

- a) Why didn't Alana list any number greater than 10 in the first column of her table?
- b) Why didn't Alana list 0 in the first column of her table?
- 7. Use Alana's method to find all pairs of numbers that multiply to give the number in bold.

b) 8

6	1st	2nd
	1	
	2	
	3	
	4	
	5	
	6	

a)

1st	2nd
1	
2	
3	
4	
5	
6	
7	
8	

· · ·		
c) 9	1st	2nd
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	

1st	2nd
1	36
2	18
3	12
4	9
5	
6	6

COPYRIGHT © 2009 JUMP MATH: NOT TO BE COPIED

NS8-2 LCMs and GCFs

1.	Ma	ark t	he r	nultip	oles	of ea	ach	num	ber	on t	he r	numt	ber l	lines	•											
	2 :	♓	+	Ж	+	Ж	+	Ж	+	Ж	+	*	+	*		Ж	+	*		Ж		Ж		*	+	Ж
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	3 :	⊢	+		+		+	-	+		+														+	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	4 :	\vdash	+		+		+		+		+														+	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	5 :	\vdash					+		+																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
2.	0 i	sar	nult	iple (of e	very	num	nber.	No	t cou	untin	ıg 0,	finc	the	first	: 2 c	omn	ו non	nult	iples	of:					
	a)	2 a	ind	5	,	-	b) 2	anc	13_		,		c)	3 ar	nd 4		_,		d)	2 a	and 4	4	,		_
	The a m	low ultip	le o	con f the	nmc nur	n m nber	ultip s.	ole (/I) of	two	or r	nore	e nui	nbe	rs is	the	sma	lles	t nur	nbe	r (no	ot 0)	that	is	
3.	Lo	ok a	it yo	ur ai	nsw	ers to	o Qi	uesti	on 2	2. W	hat i	is the	e LC	CM c	of:											
	a)	2 a	ind	5			b) 2	anc	13_				c)	3 ar	nd 4		_		d)	2 8	and 4	4			
4.	Fir	nd th	ne lo	wes	t co	mmo	n m	ultip	le o	fead	ch p	air o	f nu	imbe	ers.											
	a)	3 a	nd :	5			b) 6	and	10	•			c)	9 ar	nd 1:	2			d)	2 8	and	6			
		3:	3, 6	, 9, 1	12, 1	15 , 18	8	6				9:						2:								
		5:	5, 1	0, 15	5, 20)		1	0:						12:						6:					
		LC	M =	=1	5			L	СМ	=					LCN	/ =		_			LC	CM =	=			
	۵)	2 9	nd	10		f)	2 9	nd C	2		a)	3 9	and	15		h)	4 =	and §	2		i)	8 9	und §	8		
	i)	5 a	ind	15		k)	5 a	nd 1	0		9))	3 a	and	10		m`) 6 a	and f	, 15		") n)	6 a	ind 8	8		
	J/					/			-		-,						,		-		,			-		
5.	a)	Нои	v ca	n yo	u fin	d the	e se	conc	l co	mmc	on m	nultip	ole c	of two	o nu	mbe	ers fr	om	he f	irst?						
	b)	The	firs	t con	nmc	n mı	ultipl	e of	18	and	42 i	s 12	6. V	Vhat	is th	ie se	econ	d co	mm	on n	nulti	ple?				
6.	Fir inc sto	nd al creas op di	ll the sing vidi	e fac orde ng?	tors er—	of ea divid	ach e by	num / 1, 2	1ber 2, 3,	by c 4, 5	divid , an	ling t d so	the i on.	num . Hov	ber l w do	oy th you	ne w u kno	hole ow w	nun hen	nber you	s in car	1				
	a)	33 1, .	3, 1 ⁻	1, 33	}	b)	55				c)	65				d)	66				e)	90				

COPYRIGHT © 2009 JUMP MATH: NOT TO BE COPIED

The greatest number that is a factor of two or more numbers is called the **greatest common factor (GCF)** of the numbers.

7.	Us	e your answers	to Questic	on 6. Find t	he greatest con	nmon factor of:		
	a)	33 and 55	b)	33 and 66	6 c)	33 and 90	d)	65 and 66
	e)	33 and 65	f)	55 and 65	5 g)	33, 55 and 65	h)	55, 65 and 90
_								
-	Two	numbers are ca	lled cons	ecutive if o	one number is t	ne next number a	fter the c	other.
	Exai	mple: 13 and 14	are conse	ecutive bec	cause 14 is the i	next number after	13.	
	-							
IN	VES	TIGATION 1 ► \	What is the	e GCF of tw	wo consecutive	numbers?		
Α.	Fin	d the factors of	each num	ber and the	en the GCF of e	each pair.		
	a)	14 and 15	b)	24 and 25	5 c)	27 and 28	d)	44 and 45
		14 : 1, 2, 7, 14		24 :		27:		44 :
		15 : 1, 3, 5, 15		25 :		28 :		45 :
		GCF: <u>1</u>		GCF:	_	GCF:		GCF:
В.	Ма	ike a conjecture	about the	GCF of an	ny two consecut	ive numbers.		
C.	Tes	st your conjectur	e on two o	consecutive	e numbers of yo	our choice:a	and	GCF:
Q	9 an	d 15 are multiple	es of 3.		So 15 + 9 and	15 – 9 are multip	les of 3,	too!
	ę	$\theta = \bigcirc \bigcirc \bigcirc 1$	5 = O O	000	15 + 9 = O C	00000	O 15 -	9 = 00000
		000	00	000	00	00000	0	\circ $(\circ \circ \circ)$
		000	00	000	00	000000	0	00000
8.	a)	Rewrite the cor	nclusion in	the box us	sing the word fa	ctor instead of m	ultiple:	
		3 is a factor of	both 9 and	d 15, so 3 i	is a factor of bot	h	and	
	b)	Draw pictures t $20 + 8$ and 20	o show th – 8.	at any facto	or of both 8 and	20 is also a facto	or of both	
	C)	Explain why an	y commor	n factor of §	99 and 100 mus	t divide the sum	99 + 100).
	d)	Explain why an 100 – 99.	y commor	n factor of §	99 and 100 mus	t divide the different	ence	

e) Without finding the factors of 99 and 100, explain why their GCF is 1.

4

INVESTIGATION 2 ► How are the GCF, the LCM, and the product of two numbers related?

а	b	a $ imes$ b	GCF	LCM	$\textbf{GCF} \times \textbf{LCM}$
3	4				
2	5				
4	6				
10	15				
5	10				
3	5				
4	5				
6	9				
12	15				

A. Complete the chart. Include three more values of your choice for *a* and *b*.

B. Which two columns are the same in every row?

and

C. Write an expression for the LCM in terms of $a \times b$ and GCF.

LCM = _____

- D. When the LCM is the same as the product, what is the GCF? _____
- **E.** Choose two more pairs of numbers *a* and *b* where *a* is a factor of *b*, and complete the chart.

а	b	a $ imes$ b	GCF	LCM	$\mathbf{GCF} imes \mathbf{LCM}$
2	6				

Which columns are equal? GCF =____, LCM =____ and $GCF \times LCM =$ ____ \times ____

NS8-3 Prime Numbers

	A prime number has exactly two distinct factors: itself and 1.						
	A composite number has more than two distinct factors: itself, at least one number other than itself, and 1.						
1	How many distinct factors does the number 1 have? Is 1 a prime number?						
2	List all prime numbers less than 10:						
3	List all composite numbers between 10 and 20:						
4	. What is the greatest prime number less than 30?						
5	. Circle the prime numbers in each list.						
	a) 5 4 2 8 9 1 b) 6 2 3 4 7 10						
	c) 11 25 14 13 17 20 d) 27 15 12 18 29 33						
6	List all the factors of each number.						
	a) 25: <u>1, 5, 25</u> b) 8:						
	c) 12: d) 16:						
	e) 9: f) 18:						
	g) 50: h) 45:						
	i) 60: j) 42:						
7	. Put a check mark in front of the numbers that are composite numbers.						
	30 31 32 33 34 35 36 37						
8	Write a number between 0 and 20 that has						
	a) two factors b) four factors c) five factors						
9	The prime numbers 3 and 5 differ by 2. Find three other pairs of prime numbers less than 20 that differ by 2:						
1	0. Write three consecutive numbers which are also all composite numbers:						

11. Eratosthenes was a Greek scholar who was born over 2 000 years ago in what is now Libya. He developed a method to systematically identify prime numbers. It is called **Eratosthenes' Sieve**.

Follow these directions to use Eratosthenes' Sieve:

- a) Shade the number 1 (it is not prime).
- b) Circle 2, 3, 5, and 7—all the primes less than 10.
- c) Shade all the remaining multiples of 2.
- d) Shade all the remaining multiples of 3.
- e) Shade all the remaining multiples of 5.
- f) Shade all the remaining multiples of 7.
- g) Circle the next uncircled number (11).

Note that all multiples of 11 less than 100 (11 \times 2, 11 \times 3, ..., 11 \times 9) are **already shaded** because they have a factor less than 10.

 h) Circle the next uncircled number. How do you know all multiples of that number less than 100 are already shaded?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

i) Now circle all the remaining numbers.

You've just used Eratosthenes' Sieve to circle all the prime numbers from 1 to 100!

12. How many prime numbers are there between 30 and 50? _____

13. Solve these riddles.

- a) I am a prime number less than 100. If you add 10 or 20 to me, the result is prime. What number am I?
- b) I am a prime number less than 100. My digits add to 13. What number am I?
- c) I am a prime number less than 100. My tens digit is one more than my ones digit. What number am I?
- d) I am a prime number between 20 and 70. If you reverse my digits, the result is a larger prime number. What number am I?

Any **composite** number can be written as a product of prime numbers. This product is called the **prime factorization** of the original number.

- 10×2 is not a prime factorization of 20 because the number 10 is composite
- $5\times2\times2$ is a prime factorization of 20

INVESTIGATION ► How does the prime factorization of a number compare to the prime factorization of its factors?

A. Write the prime factorization of 72 and all its factors:

Factors of 72	Prime Factorization
1	
2	2
3	3
4	2 × 2
6	
8	
9	
12	
18	
24	
36	
72	

B. How many 2s are in the prime factorization of 72?

Does any factor of 72 have more 2s in its prime factorization than 72 does?

C. How many 3s are in the prime factorization of 72?

Does any factor of 72 have more 3s in its prime factorization than 72 does?

D. Finish the sentences below by writing at least or at most.

Any factor of 72 must have ______ as many 2s in its prime factorization as 72 does.

Any factor of 72 must have ______ as many 3s in its prime factorization as 72 does.

E. Does 72 have a 5 in its prime factorization?

Does any factor of 72 have a 5 in its prime factorization? Explain why this is so.

1. The prime factorization of 180 is $2 \times 2 \times 3 \times 3 \times 5$. Without doing any calculations, circle the products that show factors of 180:

How did you decide which products to circle?

2. a) Find the prime factorizations of 84 and 96. Do the rough work in your notebook.

		84 =2	_ ×2	<u>2×</u>	3	_ × _	7				
		96 =	_ ×	×		_ × _		×	_ ×	-	
	b)	Any factor of	84 must	have in it	s prime	e fac	torizatior	at most:			
		two	2s,	one	3s,	,	one	7s			
	c)	Any factor of	96 must	have in it	s prime	e fac	torizatior	at most:			
			2s,		3s						
	d)	Can a comm	on factor	of 84 and	d 96 ha	ave a	ny 7s in	ts prime f	actorization?		
		How do you l	know?								
	e)	Any common	factor of	84 and 9	6 mus	t hav	ve in its p	rime facto	orization at m	iost:	
			2s,		3s						
	f) The prime factorization of the greatest common factor (GCF) of 84 and 96 is:										
		× _	:	×	_Soth	he G	CF of 84	and 96 is	<u> </u>		
3.	The prime factorization of each number is given. Match up as many pairs of common prime factors as you can. Then find the prime factorization of the GCF and calculate the GCF.										
	a)	$36 = 2 \times 2 \times 2 \times 10^{-10}$	3 × 3				b)	60 = 2 ×	2 × 3 × 5		
		$24 = 2 \times 2 \times$	2 × 3					50 = 2 ×	5 × 5		
		GCF = <u>2</u>	_×_2_	_×_3_	_=_	12		GCF = _	×	=	
	c)	$42 = 2 \times 3 \times$: 7				d)	90 = 2 ×	$3 \times 3 \times 5$		
		$72 = 2 \times 2 \times$	2 × 3 ×	3				140 = 2	imes 2 $ imes$ 5 $ imes$ 7		
		GCF =	_ ×	_=	_			GCF = _	×	=	
4.	Wri	ite a prime fac	torizatior	n for each	numb	er. th	nen find t	he GCF o	f each pair.		
	a)	24 and 32	b) 2	4 and 30	C	c) 1(6 and 40	d)	27 and 39	e) 70 and 5	6
	,		·, –		-	,		- /		,	
5.	Fin	d the GCF of	the numb	oers.							
	a)	24, 30, 54			b) {	34, 2	10, 300		c)	45, 72, 120	
					-						

INVESTIGATION ► How does the prime factorization of a number compare to the prime factorization of its multiples?

A. Write the prime factorizations of the first ten multiples of 90 (don't include zero).

Multiples of 90	Prime factorizations
1 × 90	$2 \times 3 \times 3 \times 5$
2 × 90	$2 \times 2 \times 3 \times 3 \times 5$
3 × 90	3 imes 2 imes 3 imes 3 imes 5
4 × 90	$2 \times 2 \times 2 \times 3 \times 3 \times 5$
5 × 90	
6 × 90	
7 × 90	
8 × 90	
9 × 90	
10 × 90	

B. How many 2s are in the prime factorization of 90? Does any multiple of 90 have fewer 2s in its prime factorization than 90 does? **C.** How many 3s are in the prime factorization of 90? Does any multiple of 90 have fewer 3s in its prime factorization than 90 does? **D.** How many 5s are in the prime factorization of 90? Does any multiple of 90 have fewer 5s in its prime factorization than 90 does? E. Finish the sentences below by writing at least or at most. Any multiple of 90 must have ______ as many 2s in its prime factorization as 90 does. Any multiple of 90 must have ______ as many 3s in its prime factorization as 90 does. Any multiple of 90 must have as many 5s in its prime factorization as 90 does. **F.** Does 90 have a 7 in its prime factorization? Does any multiple of 90 have a 7 in its prime factorization? **1.** The prime factorization of 60 is $2 \times 2 \times 3 \times 5$. Without doing any calculations, circle the products that show multiples of 60: $2 \times 2 \times 3 \times 3 \times 5$ $2 \times 3 \times 5 \times 7 \times 7$ $2 \times 2 \times 5 \times 5 \times 5$ $2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 11$ How did you decide which products to circle?

2.	a)	Find the prime factorize	zations of 90 a	and 168. Do the roug	gh work in you	ur notebool	۲.
		90 = <u>2</u> × <u>3</u>	<u>3 </u>	×5			
		168 = ×	×	××_			
	b)	Any multiple of 90 mu	st have in its	prime factorization a	t least:		
		2s,	two	3s, <u>one</u> 5	S		
	C)	Any multiple of 168 m	ust have in its	s prime factorization	at least:		
		2s,		3s,7	's		
	d)	Any common multiple	of 90 and 16	8 must have in its pr	ime factorizat	ion at leas	t:
		2s,		3s,5	is, and	7	Ś.
	e)	The lowest common	multiple (LC	:M) of 90 and 168 m	ust be:		
		× >	××	×	_ ×	×	_ =
3.	a)	Find the prime factoriz	zations of 100) and 126.			
		100 = ×	×	×			
		126 = ×	×	×			
	b)	Any multiple of 100 m	ust have in its	s prime factorization	at least:		
		2s, an	d	5s			
	c)	Any multiple of 126 m	ust have in its	s prime factorization	at least:		
	c)	Any multiple of 126 m	ust have in its	s prime factorization 3s, and	at least: 7s		
	c) d)	Any multiple of 126 m 2s, Any common multiple	ust have in its	s prime factorization 3s, and 26 must have in its p	at least : 7s prime factoriza	ation at lea	st:
	c) d)	Any multiple of 126 m 2s,2s, Any common multiple 2s,2s,	ust have in its of 100 and 1	s prime factorization 3s, and 26 must have in its p 3s,5	at least : 7s prime factoriza 5s, and	ation at lea 7	st : ′s.
	c) d) e)	Any multiple of 126 m 2s,2s, Any common multiple 2s, The lowest common	ust have in its of 100 and 12 multiple (LC	s prime factorization 3s, and 26 must have in its p 3s,5 :M) of 100 and 126 r	at least: 7s prime factoriza 5s, and nust be:	ation at lea 7	st : ′s.
	c) d) e)	Any multiple of 126 m 2s,2s, Any common multiple 2s, The lowest common	ust have in its of 100 and 12 multiple (LC × ×	s prime factorization 3s, and 26 must have in its p 3s, 5 CM) of 100 and 126 m	at least: 7s prime factoriza 5s, and nust be: _ ×	ation at lea 7	st: 's. _ =
	c) d) e)	Any multiple of 126 m 2s, Any common multiple 2s, The lowest common ×	ust have in its of 100 and 1 multiple (LC × ×	s prime factorization 3s, and 26 must have in its p 3s, 5 SM) of 100 and 126 r	at least: 7s prime factoriza 5s, and nust be: _ ×	ation at lea 7	st: 's. _=
4.	c) d) e) Th	Any multiple of 126 m 2s,2s, Any common multiple 2s, The lowest common × he prime factorization of	ust have in its of 100 and 12 multiple (LC × ×	s prime factorization 3s, and 26 must have in its p 3s, 5 CM) of 100 and 126 r × r is given. Find the p	at least: 7s prime factoriza 5s, and nust be: _ [×] rime factoriza	ation at lea 7 ×	st: 's. _ =
4.	c) d) e) Th LC	Any multiple of 126 m 2s,2s, Any common multiple 2s,2s, The lowest common × the prime factorization of CM. Then calculate the I	ust have in its of 100 and 12 multiple (LC × × feach numbe LCM.	s prime factorization 3s, and 26 must have in its p 3s, 5 3s, 5 (M) of 100 and 126 r × r is given. Find the p	at least: 7s prime factoriza 5s, and nust be: _ × rime factoriza	ation at lea 7 × ation of the	st: 's. _ =
4.	c) d) e) Th LC a)	Any multiple of 126 m 2s, Any common multiple 2s, The lowest common \times te prime factorization of CM. Then calculate the l $90 = 2 \times 3 \times 3 \times 5$ and	ust have in its of 100 and 12 multiple (LC × × feach numbe LCM. nd 140 = 2 ×	s prime factorization 3s, and 26 must have in its p 3s, 5 3s, 5 CM) of 100 and 126 m \times r is given. Find the p $2 \times 5 \times 7$	at least: 7s prime factoriza 5s, and nust be: _ × rime factoriza	ation at lea 7 ×	st : 's. _==
4.	c) d) e) Th LC a)	Any multiple of 126 m 2s, Any common multiple 2s, The lowest common \times the prime factorization of CM. Then calculate the I $90 = 2 \times 3 \times 3 \times 5$ and So LCM = ×	ust have in its of 100 and 12 multiple (LC \times \times f each numbe LCM. nd 140 = 2 \times	s prime factorization 3s, and 26 must have in its p 3s, 5 CM) of 100 and 126 m \times r is given. Find the p $2 \times 5 \times 7$ \times	at least: 7s prime factoriza is, and nust be: × rime factoriza	ation at lea 7 × ation of the	st : 's. _=
4.	c) d) e) Th LC a) b)	Any multiple of 126 m 2s,2s, Any common multiple 2s,2s, The lowest common $\begin{array}{c} & & \\ & & \\ & & \\ \end{array}$ the prime factorization of CM. Then calculate the lower set of the set o	ust have in its of 100 and 12 multiple (LC \times \times f each numbe LCM. nd 140 = 2 \times \times \times \times 5 and 180 =	s prime factorization 3s, and 26 must have in its p 3s, f (M) of 100 and 126 m × r is given. Find the p $2 \times 5 \times 7$ × $= 2 \times 2 \times 3 \times 3 \times 5$	at least: 7s prime factoriza is, and nust be: × rime factoriza	ation at lea 7 × ation of the	st: 's. _=
4.	c) d) e) Th LC a) b)	Any multiple of 126 m 2s,2 Any common multiple 2s,2 The lowest common The lowest common x = 2x, 2x = 2x The lowest common x = 2x, 2x = 2x x = 2x, 2x = 2x x = 2x, 2x = 2x x = 2x, 2x = 2x So LCM =x So LCM =x	ust have in its of 100 and 12 multiple (LC \times \times f each numbe LCM. nd 140 = 2 \times \times 5 and 180 = \times \times 5	s prime factorization 3s, and 26 must have in its p 3s, f (M) of 100 and 126 m × r is given. Find the p $2 \times 5 \times 7$ × = $2 \times 2 \times 3 \times 3 \times 5$ ×	at least: 7s prime factoriza post be: × rime factoriza	ation at lea 7 × ation of the ×	st: 's. _=
4.	c) d) e) Th LC a) b)	Any multiple of 126 m 2s, Any common multiple 2s, The lowest common \times the prime factorization of CM. Then calculate the l $90 = 2 \times 3 \times 3 \times 5$ and $So LCM =$ \times $120 = 2 \times 2 \times 2 \times 3$ So LCM = \times	ust have in its of 100 and 12 multiple (LC \times \times f each numbe LCM. nd 140 = 2 \times \times 5 and 180 = \times \times 5	s prime factorization 3s, and 26 must have in its p 3s, f (M) of 100 and 126 m $ \times r is given. Find the p 2 \times 5 \times 7 \times = 2 \times 2 \times 3 \times 3 \times 5 \times$	at least: 7s prime factorization pis, and pis, and nust be: rime factorization	ation at lea 7 × ation of the ×	st: 's. _ = =
4.	c) d) e) Th LC a) b) Fir	Any multiple of 126 m 2s,2 Any common multiple 2s, The lowest common \times the prime factorization of CM. Then calculate the l 90 = 2 × 3 × 3 × 5 and So LCM =× 120 = 2 × 2 × 2 × 3 × 3 × 5 and So LCM =× 120 = 2 × 2 × 2 × 3 × 3 × 5 and So LCM =×	ust have in its of 100 and 12 multiple (LC \times \times feach numbe LCM. nd 140 = 2 \times \times 5 and 180 = \times 5 and 180 = \times 5 and 180 =	s prime factorization 3s, and 26 must have in its p 3s, f (M) of 100 and 126 m \sim × r is given. Find the p $2 \times 5 \times 7$ $= 2 \times 2 \times 3 \times 3 \times 5$ $= 2 \times 2 \times 3 \times 3 \times 5$ umber. Then find the	at least: 7s prime factorization prime factorization prime factorization	ation at lea 7 × ation of the × zation of th	st: 's. _ = = e
4.	 c) d) e) Th LC a) b) Fir LC a) 	Any multiple of 126 m 2s,2 Any common multiple 2s,2 The lowest common 2s,2 The lowest common 2s,2 The lowest common 2s,2 The lowest common 2s,2 2s,2 The lowest common 2s,2 $2s$, _	ust have in its of 100 and 12 multiple (LC \times \times f each numbe LCM. nd 140 = 2 \times \times 5 and 180 = \times 5 and 180 = \times 5 and 180 = \times 5 and 180 = \times 5 and 180 =	s prime factorization 3s, and 26 must have in its p 3s, f 3s, f 100 and 126 m $^{\times}$ r is given. Find the p 2 × 5 × 7 × = 2 × 2 × 3 × 3 × 5 × umber. Then find the c) 50 and 60	at least: 7s prime factorization bs, and nust be:	ation at lea 7 × ation of the × zation of th	st: 's. _ = = e

NS8-7 Order of Operations

	Addition and subtraction are done from left to right. If there are brackets, do the operations in brackets first. Example: $7 - 3 + 2 = 4 + 2 = 6$ but $7 - (3 + 2) = 7 - 5 = 2$										
1	(م	Calculate each expre	esion using	the correct o	order of operatio	ns					
	a)	(12 + 9) - 2 - 1		$12 \pm (9 - 2)$		13.	2 + 9 - (2 - 1)				
		(12 + 3) = 2		12 + (0 2)	1)	(1	2 + 0 (2 + 1)				
	h)	(12 + 3 - 2) = 1	newere did	12 + (3 - 2)	(1)	()	(z + 3) = (z - 1)				
	0)	now many unerent a		you get in pe	int a):						
2.	a)	Add brackets in differ	ent ways to	get as many	different answe	ers as you o	an.				
		i) 12 + 9 + 2 + 1		ii) 12 – 9 +	2 – 1	iii) 12-9-2-1				
	b)	How many different a	inswers did	_ ii)	iii)						
	c)	Check all that apply. The order of operations affects the answer when the expression consists of									
		addition only		addition and subtraction							
3.	Eva a)	aluate each expressio $4 \times 3 \div 6 \times 7$	b ÷ 5 × 3 = n. b) 6 × 4	$\div 3 \times 3 = 9$ b	ut 15 ÷ (5 × 3) c) 30 ÷ 5 ÷	$= 15 \div 15$ (2×3)	= 1 d) $16 \times 2 \div (4 \times 2)$				
4.	a)	Add brackets in differ	ent ways to	get as many	different answe	ers as you o	an.				
		i) $2 \times 3 \times 2 \times 5$		ii) 64 ÷ 8 ÷	÷ 4 ÷ 2	iii) 90 \div 5 \times 6 \div 3				
	b)	Which expressions in the brackets?	ı part a) giv	e the same a	nswer, no matte	r where you	u place				
5.	Do	the operation in brack	kets first.								
	a)	18 + (6 × 3)	b) (18 +	6) × 3	c) (18+6) -	÷ 3	d) 18 + (6 ÷ 3)				
		= 18 + 18 = 36									
	e)	18 – (6 × 3)	f) (18–6	6) × 3	g) (18 – 6) ÷	- 3	h) 18-(6÷3)				
6.	Ch coi	eck all that apply. The mbines…	order of op	erations affe	cts the answer v	vhen the ex	pression				
		addition and multiplic	ation		addition a	and division					
		subtraction and multi	plication		subtractio	on and divis	sion				
		addition and subtract	ion		multiplica	tion and div	vision				

COPYRIGHT © 2009 JUMP MATH: NOT TO BE COPIED

Mathematicians have ordered the operations to avoid writing brackets all the time. The order is:

- 1. Operations in brackets.
- 2. Multiplication and division, from left to right.
- 3. Addition and subtraction, from left to right
- Example: $3 \times 5 + 3 \times 6 = (3 \times 5) + (3 \times 6)$ but $3 \times (5 + 3) \times 6$ = 15 + 18 $= 3 \times 8 \times 6$ = 33= 144

Notice that the brackets in the first expression are not necessary.

7. Evaluate each expression. Use the correct order of operations.

a) 4 × 2 – 7	b) $3 + 6 \div 3$	c) 9-2 × 4	d) $70 \div 7 + 4$
e) $9 + 9 \div 3 - 5$	f) $3 \times 7 - 6 \div 2$	g) (9-5) × 3	h) (17 − 9) ÷ 4

- 8. Translate the instructions into mathematical expressions.
 - a) Add 8 and 3. Then subtract 4. Then multiply by 3. (8 + 3 4) × 3
 b) Subtract 6 from 9. Then multiply by 2. Then add 4.
 - c) Multiply 6 and 5. Then subtract from 32. Then add 5.

9. Write the expressions in words.

a)	(6 + 2) × 3	Add	and	. Then multiply by		
b)	$(24-2 imes 6)\div 4$	Multiply	and	. Then subtract from	. Then	
c)	4 × (3 – 1 + 5)					
d)	$(3+2\times 6)\div 5$					

10. Calculate the expression in the box in your notebook. Which expression without brackets gives the same answer?

- a) 8-(5+2) = 8-5-2 or 8-5+2 b) 7-(3-2) = 7-3-2 or 7-3+2c) 7+(5-2) = 7+5-2 or 7+5+2 d) 6+(2+4) = 6+2+4 or 6+2-4
- **11.** a) Add brackets in different ways to get as many different answers as you can.
 - i) $3 + 1 \times 7 2$ ii) $16 4 \times 2 + 8$ iii) $16 \div 4 \times 2 + 8$
 - b) How many different answers did you get in part a)? i) _____ ii) _____ iii) _____
- **12.** Rewrite each expression without brackets by changing only operations symbols. Keep the answer the same.
 - a) $5 \times 8 \div (4 \div 2)$ b) $5 \times 8 \div (4 \times 2)$ c) $5 \times 8 \times (4 \div 2)$

INVESTIGATION 1 What types of expressions can be written without brackets?

A. Write the dimensions of the two smaller rectangles in the blanks.

Write the area of the large rectangle in two ways: one with brackets and one without. Then write an equation.

- B. Write these expressions without brackets. Draw a picture if it helps.
 - a) 7 × (10 + 2) = _____ × _____ + _____ × _____
 - b) $4 \times (20 + 3) =$ _____ × ____ + ____ × ____
- **C.** Use your answers in B. to find 7 \times 12 and 4 \times 23.
- D. Write the dimensions of the four smaller rectangles in the blanks.Write the area of the large rectangle in two ways, one with brackets and one without.Then write an equation.

Ε.	Write these expressions without bracker your answers.	ets. Draw pictu	ires in yo	ur notet	book to shov	v					
	a) $(10+2) \times (10+3) = ___ \times _$	+	_ ×	_+	×	_+	_ ×				
	b) $(20 + 7) \times (40 + 5) = _$	+	_ ×	_+	×	_+	_ ×				
	c) $(3+4+5) \times 2 = ___ \times __$	_ + × _	+		×						
	d) $2 \times (3 + 4 + 5) = _$	_ + × _	+		×						
F.	Use your answers to part E to find 12	imes 13 and 27 $ imes$	45.								
G.	Calculate both sides to determine whic	h equations a	re true.								
	a) $6 \div (2 + 1) = 6 \div 2 + 6 \div 1$	6 ÷ (2 + 1)	=	÷	=	_					
		$6 \div 2 + 6 \div 1 = ___+__==__$									
		Is the equati	ion true?								
	b) $(6+4) \div 2 = 6 \div 2 + 4 \div 2$	(6 + 4) ÷ 2	=	_÷	=	_					
		$6\div 2+4\div$	2 =	+	=						
		Is the equati	ion true?								
	c) $(5-2) \times 4 = 5 \times 4 - 2 \times 4$	(5 – 2) × 4 =	=	×	_=						
		5 imes 4 - 2 imes	4 =		=						
		Is the equati	ion true?								
	d) $(8-2) \times (8-3) = 8-2 \times 3$	(8–2) × (8	– 3) =	×	=						
		8-2×3=			=						
		Is the equati	ion true?								
	e) $10 \div (4-2) = 10 \div 4 - 10 \div 2$	10 ÷ (4 – 2)	=	_÷	=	_					
		10 ÷ 4 – 10	÷ 2 =		=						
		Is the equati	ion true?								
	f) $5 \times (8 - 3) = 5 \times 8 - 5 \times 3$	5 × (8 – 3) =	=	×	_=						
		5 imes 8-5 imes	3 =		=						
		Is the equati	ion true?								
Н.	Match each expression with its descrip	tion.									
	$8 \div (4+3)$ Can be written	en without brac	ckets and	l does n	ot require w	riting more	numbers.				

8-(4+3) Can be written without brackets but requires writing more numbers. 8 imes (4 + 3)

NS8-8 Fractions

NS8-9 Mixed Numbers

COPYRIGHT © 2009 JUMP MATH: NOT TO BE COPIED

NS8-10 Improper Fractions

1. Write these fractions as improper fractions.

2. Shade one piece at a time until you have shaded the amount given by the improper fraction.

NS8-11 Mixed and Improper Fractions

1. Write these fractions as **mixed numbers** and as **improper fractions**.

2. Shade the amount of pie given by the mixed fraction. Then write an improper fraction for the amount.

3. Shade the amount of area given by the improper fraction. Then write a mixed number for the amount.

COPYRIGHT © 2009 JUMP MATH: NOT TO BE COPIED

Explain.

NS8-12 More Mixed Numbers

b) How many scoops of cup B would she need? _____

Number Sense 8-12

COPYRIGHT © 2009 JUMP MATH: NOT TO BE COPIED

NS8-13 More Mixed Numbers and Improper Fractions

How many whole pies are there in $\frac{13}{4}$ pies? There are 13 pieces altogether, and each pie has 4 pieces. So you can find the number of whole pies by dividing 13 by 4: $13 \div 4 = 3$ remainder 1 There are 3 whole pies and 1 quarter left over: $\frac{13}{4} = 3\frac{1}{4}$ Find the number of whole pies in each amount by dividing. a) $\frac{4}{2}$ pies = _____ whole pies b) $\frac{15}{3}$ pies = _____ whole pies c) $\frac{16}{4}$ pies = _____ whole pies d) $\frac{21}{7}$ pies = _____ whole pies e) $\frac{25}{5}$ pies = _____ whole pies f) $\frac{30}{6}$ pies = _____ whole pies 2. Find the number of whole pies and the number of pieces remaining by dividing. a) $\frac{5}{2}$ pies = <u>2</u> whole pies and <u>1</u> half pie = $\frac{2\frac{1}{2}}{2}$ pies b) $\frac{11}{2}$ pies = _____ whole pies and _____ half pie = _____ pies c) $\frac{13}{3}$ pies = _____ whole pies and _____ third = _____ pies d) $\frac{17}{4}$ pies = _____ whole pies and _____ fourth = _____ pies Write the following improper fractions as mixed numbers. a) $\frac{5}{2}$ b) $\frac{14}{3}$ c) $\frac{17}{6}$ d) $\frac{21}{4}$ e) $\frac{29}{5}$ f) $\frac{31}{7}$ g) $\frac{70}{9}$ h) $\frac{61}{8}$ Write a mixed number and improper fraction for the total number of litres: 4. 1 L 5. Write a mixed number and improper fraction for the length of the rope: 1 m 6. Order from smallest to largest: $\frac{7}{3}$, $\frac{9}{4}$, $\frac{5}{2}$. 7. Between which two whole numbers is $\frac{21}{9}$? 8. How much greater than a whole is each fraction? 9. Which fractions are greater than 3 but less than 4? a) $\frac{11}{7}$ b) $\frac{8}{5}$ a) $\frac{17}{4}$ b) $\frac{5}{3}$ c) $\frac{16}{5}$ d) $\frac{5}{2}$ e) $\frac{11}{6}$ 19 d) C) 10

NS8-14 Comparing Fractions — Introduction

1. Shade the given amount in each pie. Then circle the greater fraction in each pair.

- 2. Two fractions have the same denominators (bottoms) but different numerators (tops)? How can you tell which fraction is greater?
- 3. Shade the given amount in each pie. Then circle the greater fraction in each pair.

- 4. Two fractions have the same numerators (tops) but different denominators (bottoms). How can you tell which fraction is greater?
- 5. Write the fractions in order from least to greatest.

	a) $\frac{1}{8}, \frac{1}{3}, \frac{1}{1}$	15			b	$) \frac{2}{9},$	$\frac{2}{6}, \frac{2}{8},$	2 12		c)	$\frac{4}{5}$, $\frac{1}{5}$, $\frac{3}{5}$	
	d) $\frac{9}{10}, \frac{2}{10}$, <u>1</u> , 1	5 10		е	$) \frac{5}{8},$	$\frac{7}{8}, \frac{5}{9}$			f)	$\frac{4}{7}, \frac{3}{7}, \frac{4}{5}$	
	BONUS ►	<u>15</u> 19	<u>9</u> 23	<u>11</u> 21	 	6 23	9 22	<u>15</u> 17	<u>9</u> 21			
6.	Which fraction $\frac{7}{5}$ or $\frac{9}{5}$	on is g	reater	? How	do you	know	?	b) $4\frac{1}{2}$	$\frac{1}{4}$ or $4\frac{3}{4}$			

NS8-15 Equivalent Fractions

Compare the fractions by shading to see which is more. Write > (more than),
 < (less than), or = (equal).

Two fractions are said to be equivalent if they represent the same amount.

- 2. List two pairs of equivalent fractions from Question 1. _____ = ____ and _____ = ____
- **3.** Group the squares to make an equivalent fraction. How many of the equal larger groups are shaded?

NS8-16 Comparing Fractions Using Equivalent Fractions

1. Write six equivalent fractions by skip counting to find the numerators.

a)
$$\frac{2}{3} = \frac{1}{6} = \frac{1}{9} = \frac{1}{12} = \frac{1}{15} = \frac{1}{18} = \frac{1}{21}$$

b) $\frac{3}{5} = \frac{1}{10} = \frac{1}{15} = \frac{1}{20} = \frac{1}{25} = \frac{1}{30} = \frac{1}{35}$

2. Find two fractions with the same denominators from the lists in Question 1. _____ and _____
 Which fraction is greater: ²/₃ or ³/₅? _____
 How do you know? _____

When you multiply the numerator and denominator of a fraction by the same number, you create an **equivalent fraction**. $\frac{1}{2} = \frac{1 \times 5}{2 \times 5} = \frac{5}{10}$ You are cutting each

piece into 5 parts

- **3.** Create an equivalent fraction with denominator 36 by multiplying the numerator and denominator by the same number:
 - a) $\frac{1}{2} \times \frac{18}{\times 18} = \frac{18}{36}$ b) $\frac{4}{9} = \frac{1}{36}$ c) $\frac{5}{6} = \frac{1}{36}$ d) $\frac{11}{18} = \frac{1}{36}$ e) $\frac{2}{3} = \frac{1}{36}$ f) $\frac{3}{4} = \frac{1}{36}$ g) $\frac{1}{6} = \frac{1}{36}$ h) $\frac{5}{12} = \frac{1}{36}$
- 4. Write the fractions from Question 3 in order from smallest to largest.
- **5.** a) Write several fractions equivalent to $\frac{1}{2}$.

$$\frac{1}{2} = \frac{1}{4} = \frac{1}{6} = \frac{1}{8} = \frac{1}{10} = \frac{1}{12} = \frac{1}{14} = \frac{1}{16} = \frac{1}{18} = \frac{1}{20}$$

b) How much more than a half is each fraction below?

c) Write all the given fractions from part b) in order from smallest to largest.

1

1. Imagine moving the shaded pieces from pies A and B into pie plate C. Show how much of pie C would be filled, then write a fraction for pie C.

2. Imagine pouring the liquid from cups A and B into cup C.

Shade the amount of liquid that would be in C. Then complete the addition statements.

4. Show how much pie would be left if you took away the amount shown. Then complete the fraction statement.

To add fractions with different denominators:	
Step 1: Find the LCM of the denominators.	Step 2: Create equivalent fractions with that denominator.
$\frac{1}{3} + \frac{1}{5}$	$\frac{1}{3} + \frac{2}{5} = \frac{5 \times 1}{5 \times 3} + \frac{2}{5} \frac{\times 3}{\times 3}$
Multiples of 3: 0, 3, 6, 9, 12, 15 , 18	5 6
Multiples of 5: 0, 5, 10, 15 , 20, 25, 30	$=\frac{3}{15}+\frac{3}{15}$
LCM (3, 5) = 15	$=\frac{11}{15}$

The LCM of the denominators is called the **lowest common denominator (LCD)** of the fractions.

1. Find the LCD of each pair of fractions. Then show what numbers you would multiply the numerator and denominator of each fraction by in order to add.

	a) LCD = <u>6</u>	b) LCD =	c) LCD =	d) LCD =
	$\frac{3\times}{3\times}\frac{1}{2} + \frac{2}{3}\frac{\times 2}{\times 2}$	$\frac{3}{4} + \frac{1}{8}$	$\frac{1}{30} + \frac{1}{6}$	$\frac{3}{4}+\frac{2}{3}$
	e) LCD =	f) LCD =	g) LCD =	h) LCD =
	$\frac{3}{7}+\frac{1}{3}$	$\frac{3}{4}+\frac{1}{6}$	$\frac{4}{5} + \frac{1}{10}$	$\frac{1}{8} + \frac{5}{7}$
2.	Add or subtract the	e fractions by changing ther	m to equivalent fractions with	I
	a) $\frac{2}{5} + \frac{1}{4}$	b) $\frac{4}{15} + \frac{2}{3}$	c) $\frac{2}{3} - \frac{1}{8}$	d) $\frac{2}{3} - \frac{1}{12}$
	=	=	=	=
	=	=	=	=
	e) $\frac{3}{4} + \frac{1}{8}$	f) $\frac{1}{6} + \frac{13}{24}$ g) $\frac{1}{2}$	h) $\frac{4}{7} + \frac{1}{8}$	i) $\frac{4}{9} - \frac{1}{6}$
3.	Add or subtract.			
	a) $\frac{5}{6} + \frac{1}{12}$	b) $\frac{19}{25} - \frac{3}{5}$ c) $\frac{8}{5}$	$\frac{5}{7} - \frac{1}{4}$ d) $\frac{4}{9} + \frac{2}{5}$	e) $\frac{5}{8} - \frac{7}{12}$
	f) $\frac{2}{3} + \frac{1}{4} + \frac{1}{2}$	g) $\frac{3}{15} + \frac{2}{3} + \frac{1}{5}$	h) $\frac{11}{15} + \frac{2}{3} - \frac{1}{5}$	i) $\frac{3}{5} + \frac{17}{30} - \frac{5}{6}$

A fraction is reduced to **lowest terms** when the greatest common factor of its numerator and denominator is the number 1. $\frac{6}{8}$ is not in lowest terms because the GCF of 6 and 8 is 2.

Factors of 6: 1, 2, 3, 6 Factors of 8: 1, 2, 4, 8 $\frac{3}{4}$ is in lowest terms because the GCF of 3 and 4 is 1. Factors of 3: 1, 3 Factors of 4: 1, 2, 4

4. Find the GCF of the numerator and denominator. Is the fraction in lowest terms? Write yes or no.

a)	$\frac{2}{6}$	b) $\frac{3}{5}$	c) $\frac{4}{5}$	d) $\frac{5}{10}$	e) <u>8</u> 10
	GCF = <u>2</u>	GCF =	GCF =	GCF =	GCF =
	no				
f)	7 10	g) $\frac{15}{16}$	h) $\frac{14}{12}$	i) $\frac{9}{5}$	j) <u>5</u> 9

To reduce a fraction to lowest terms:

Step 1: Find the GCF of the numerator and denominator

Step 2: Divide both the numerator and denominator by the GCF.

5. Reduce the fractions below by dividing the numerator and the denominator by their GCF.

	a) $\frac{2}{10} \div 2$	$=\frac{1}{5}$	b)	$\frac{2}{6} \div$	=	c)	$\frac{2}{8} \div$	=	d)	$\frac{2}{12} \div$	=
	e) $\frac{6}{9}$	=	f)	3 15	=	g)	<u>4</u> 12	=	h)	20 25	=
6.	Add or subtr	ract, then rec	luce	your answ	er to lowest	tern	ns.				
	a) $\frac{5\times}{5\times}\frac{1}{6} + \frac{1}{1}$	1 ×3 10 ×3	b)	$\frac{13}{15} - \frac{2}{5}$		c)	$\frac{5}{6} + \frac{7}{10}$		d)	$\frac{22}{28} - \frac{2}{7}$	
	$=\frac{5}{30}+\frac{1}{30}$	$\frac{3}{30}$									
	$=\frac{8}{30}=$	<u>4</u> 15									
	e) $\frac{1}{10} + \frac{1}{2}$	$\frac{1}{2} + \frac{1}{5}$	f)	$\frac{5}{8} + \frac{1}{5} + $	1 20	g)	$\frac{1}{7} + \frac{4}{5} -$	$\frac{8}{35}$	h)	$\frac{5}{7} - \frac{8}{21} + $	$\frac{2}{3}$

NS8-19 Adding and Subtracting Mixed Numbers

1. Add or subtract.

- 2. Add or subtract by changing the fractions to equivalent fractions.
 - a) $2\frac{1}{2} + 1\frac{1}{3}$ $= 2 + 1 + \frac{1}{2} + \frac{1}{3}$ $= 3 + \frac{1}{6} + \frac{1}{6}$ $= 3\frac{1}{6}$ b) $3\frac{3}{4} - 1\frac{1}{3}$ $= 3 - 1 + \frac{3}{4} - \frac{1}{3}$ $= 2 + \frac{1}{12} - \frac{1}{12}$ $= 2\frac{1}{12}$ c) $5\frac{2}{3} - 2\frac{3}{5}$ $= 2 + \frac{1}{12} - \frac{1}{12}$ $= 2\frac{1}{12}$ c) $2\frac{3}{8} + 4\frac{1}{3}$
- 3. $1\frac{1}{2} + 2\frac{2}{3} = 3\frac{7}{6}$. How can you simplify this answer?
- 4. $\frac{4}{5}$ is greater than $\frac{1}{3}$. How can you subtract $4\frac{1}{3} 2\frac{4}{5}$?
- 5. a) Change the improper fractions to mixed numbers.
 - i) $\frac{7}{6} = 1\frac{1}{6}$ ii) $\frac{11}{5} =$ iii) $\frac{13}{7} =$ iv) $\frac{11}{4} =$
 - b) Rewrite each mixed number to make the improper fraction a proper fraction.

i) $3\frac{7}{6} = 3 + \frac{7}{6}$	ii) $2\frac{4}{3} =$	iii) $4\frac{8}{5} =$
$= 3 + 1 \frac{1}{6}$	=	=
$=4\frac{1}{6}$	=	=

c) Add by changing the fractions to equivalent fractions. Simplify your answer as in part b).

i)
$$2\frac{2}{5} + \frac{2}{3}$$

ii) $3\frac{2}{3} + \frac{5}{6}$
iii) $4\frac{3}{4} + 2\frac{3}{5}$
iii) $4\frac{3}{4} + 2\frac{3}{5}$
iii) $4\frac{3}{4} + 2\frac{3}{5}$
iii) $2\frac{2}{5} + \frac{2}{3}$
iii) $4\frac{3}{4} + 2\frac{3}{5}$
iii) $2\frac{2}{5} + \frac{2}{5}$
iii) $4\frac{3}{4} + 2\frac{3}{5}$
iii) $2\frac{2}{5} + \frac{2}{5}$
iii) $2\frac{2}{5} + \frac{2}{5}$
iii) $2\frac{2}{5} + \frac{2}{5}$
iii) $2\frac{2}{5} + \frac{2}{5}$
iii) $2\frac{3}{5} + \frac{2}{5}$
iii) $2\frac{2}{5} + \frac{2}{5}$
iii) $2\frac{3}{5} + \frac{2}{5}$
iii) $2\frac{2}{5} + \frac{2}{5}$
iii) $2\frac{3}{5} + \frac{2}{5} + \frac{2}{5}$
iii) $2\frac{3}{5} + \frac{2}{5} +$

- 6. a) Rewrite each mixed number by regrouping 1 whole as a fraction.
 - Example: $4\frac{1}{3} = 3 + 1\frac{1}{3} = 3\frac{4}{3}$ i) $5\frac{3}{4}$ ii) $5\frac{1}{2}$ iii) $1\frac{1}{6}$ iv) $2\frac{3}{4}$ v) $3\frac{2}{5}$ vi) $4\frac{5}{7}$
 - b) Subtract by rewriting the first mixed number as in part a):
 - i) $3\frac{1}{5} 1\frac{3}{4} = 3\frac{4}{20} 1\frac{15}{20}$ = $2\frac{24}{20} - 1\frac{15}{20} = 1\frac{9}{20}$ ii) $4\frac{1}{3} - 2\frac{3}{5}$
- 7. Add or subtract by first changing the mixed numbers to improper fractions.
 - a) $3\frac{1}{3} + 5\frac{3}{4}$ $= \frac{10}{3} + \frac{23}{4}$ $= \frac{40}{12} + \frac{69}{12}$ $= \frac{109}{12} = 9\frac{1}{12}$ b) $1\frac{1}{5} - \frac{2}{3}$ c) $4\frac{2}{3} + 2\frac{4}{5}$ d) $5\frac{1}{8} - 3\frac{1}{3}$
- 8. Sonjay cycled $6\frac{7}{8}$ km in the first hour, $5\frac{1}{2}$ km the second hour, and $4\frac{3}{4}$ km the third hour. How many kilometres did he cycle in the three hours?
- **9.** A cafeteria sold $2\frac{5}{8}$ cheese pizzas, $4\frac{1}{3}$ vegetable pizzas, and $3\frac{1}{4}$ deluxe pizzas at lunchtime. How many pizzas did they sell altogether?
- **10.** Gerome bought $5\frac{3}{4}$ metres of cloth. He used $3\frac{4}{5}$ to make a banner. How many metres of cloth were left over?

NS8-20 Mental Math

1. Follow Sayaka's steps to find the difference. The first question is started for you.

Number Sense 8-20

NS8-21 Investigating Fractions and Division — Advanced

- 6. The symbol ≠ means "not equal to." Translate the statements using division instead of fractions. Verify by division that the two sides are not equal.
 - $\frac{6}{2} + \frac{6}{1} \neq \frac{6}{2+1} \qquad \qquad \frac{30}{2} + \frac{30}{3} \neq \frac{30}{2+3} \qquad \qquad \frac{24}{2} + \frac{24}{6} \neq \frac{24}{2+6} \qquad \qquad \frac{70}{2} + \frac{70}{5} \neq \frac{70}{2+5}$

NS8-22 Word Problems with Adding and Subtracting Fractions

